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Abstract

This paper describes a method of obtaining results from the
simulation of a countably infinite state positive recurrent aperiodic
Markov chain at a cost considerably below the cost required to achieve
the same accuracy with pure random sampling. By reorganizing k inde-
pendent epochs or tours simulated serially into k replications simu-
lated in parallel, one can induce selected joint distributions across

replications that produce the cost-saving benefits. The joint distri-

butions follow from the use of rotation sampling, a special case of the
antithetic variate method. The chains considered are of the band type
so that for the state space S = (0,1,2,...) there exists an integer &
such that transition from a state i can move no further than to

states i - § and i+ 4.

The paper shows that an estimator of interest has variance bounded

above by 0(&%(In k)“/k?) when using rotation sampling, as compared to

a variance 0(1/k) for independent sampling. Moreover, the mean cost
4 of simulation based on rotation sampling has an unner bound O0({8In k)?)
as compared to at least 0(k) for independent sampling.

The paper also describes how one can exploit special structure in a
mode] together with rotation samplinn to improve the bound on variance

for essentially the same mean cost.

KEYWORDS: Markov chains; rotation sampling; simulation; variance reduction.
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Introduction

A recent paper (Fishman 1981) describes how one can use rotation
sampling, a special case of the antithetic variate method, to induce
substantial variance reduction in the simulation of a finite state
Markov chain. Since many discrete event simulations have an underlying
Markov structure or one close to being Markov, this variance reducing
prcposal has clear appeal. Moreover, for large and possibly i11-
conditioned transition matrices, one may prefer the Monte Carlo or
simulation method with appropriate variance reducing plans to numerical
analysis when solving for steady-state and first passage time distributions.
In fact, it may be the only feasible method for some problems. The present
paper extends the earlier results for rotation sampling to Markov chains
with countably infinite state space. Here the willingness to rely on the
simulation method for solution increases because the convenience of an
efficient computer code for matrix inversion is no longer a relevant issue.

The earlier work derived its cost-saving potential from viewing the
simulation of k tours in series of a finite (n+1) state positive re-
current aperiodic Markov chain as equivalent to the simulation of k
replications of the Markov chain in parallel. Although the marginal
distributions that arise with the two alternative formulations are
necessarily the same for corresponding variables, the parallel formulation

allows one to induce joint distributions across replications that lead to

a significant cost saving. The induced joint distributions follow from




the use of rotation sampling, as described in detail in Fishman and
Huang (1989). The cost saving arises in two ways. Firstly, for fixed
n , run time in the correlated case is 0(in k) 1in contrast to O(k)
for the serial simulation. Secondly, for fixed n the variance of an
estimator of interest has an upper bound O({1n k/k)2) for the corre-
lated case compared to 0(1/k) for the serial case.

In the present paper we replace the specification n < = with the
assumption that transition from a state can go to no more than 2& + 1
states where & is an integer. Then it is shown that the mean cost of simula-
tion has an upper bound O{((8 In k)?) and the variance of the correspond-
ing estimator has an upper bound 0(8%(1n k)“/k?) . These results compare
favorably with those using independent sampling to simulate the behavior
of a Markov chain where mean cost is, at best, O(k) and variance is proportion-
al to 1/k .

The paper also shows how one can combine rotation sampling with
special structure in the chain to achieve additivnal variance reduction
without any essential increase in cost. The relevance of this result be-
comes more apparent as the number of states occupied by the k pzairallel
replications increases at a given step. The benefit is achieved by induc-
ing an appropriate joint distribution for the transition paths of all
replications from qll states at each transition while preserving the
correct marginal distribution for each replication. By contrast, in the

earlier use of rotation sampling we preserved the marginal distributions




but merely induced an appropriate joint distribution for the transition
paths of the replications in a given state on a given transition, leav-
ing the sets of paths for different exited states conditionally indepen-
dent.

Section 1 introduces the Markov chain notation. It also formulates
the experiment as k independent tours where a tour begins with an exit
from state 0 and ends upon first entry into state a . A reformulation
in terms of k dindependent parallel tours or replications is presented
and then extended to the case of k correlated replications using rotation
sampling. Results for mean number of transitions, expected cost and vari-
ance are then derived. Section 2 derives the comparable results when com-
bining rotation sampling with special structure. Section 3 demonstrates

how the results apply to a simulation of a nearest neighbor Markov chain.

1. The Infinite State Chain

Consider a positive recurrent aperiodic Markov chain with state space
S =(0,1,2,...) and transition probabilities {pij; i,j = 0,1,...}

where there exists a positive integer & such that
p.. =0 for |i-j| > &
and

i+ (M
=1

p.
zj=max(0.i-6) i
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It is convenient to describe an alternative, but equivalent, representa-

tion to (1) whose value is apparent when actually generating sample
paths by simulation on a computer. Llet sj denote the total number of
states that have positive transition probabilities from state j and

let mjr; r = 1,...,sj denote the ordered sequence

{m 13T T 1,...,5. - 1) of the Sj states to which entry can

J
occur from state j . Then one has the representation

jr < My,re

pjm. >0 r=1,...,s
jr

S.

19 p, =0
r=1 ijr

§ > max HWﬂ' ﬂ"%s.'j” 0,1,... .

J

L=
"

Let Aij denote the reward received when a jump occurs from state
i to state j and assume for the moment that |Aijt < 0(1) . Suppose
one wishes to estimate Yoa * the mean reward received on a path begun
with a departure from state 0 and terminated with the first entry into
state a . If Ng?) gives the number of transitions from i to j on

the mth of k independent replications and Sa =S -a, then

k
] (m)
KoK e Mes, Tges OV

is an unbiased estimator of Hoa and var Rk « 1/k . Here each
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replication begins with a departure from state 0 and ends upon entry

into state a. To simulate this chain on a computer for k consecutive
independent replications or epochs, one need only set Pap 1 and
Paj = 0 for j=1,2,...
Let Tk denote the number of transitions in k epochs. Clearly
E Tk = 0(k) . Let Sk denote the cost of simulating k replications
in series. In the case of (1) with a finite state space of n + 1 ,
one has O(k) < E Sk < 0{(8k) . The lower bound applies if one can store
all the distributions and the alZases required to use the alias method ;
of Walker (1977). Also see Kronmal and Peterson (1979). As n increases
the feasibility of this approach diminishes. The upper bound O0(&k) re-
sults from application of the inverse transform method to determine the
branch taken from each state. Since in the infinite state case one can
conceive of using the alias method for a finite set of commonly entered
states and the inverse transform method for less frequented states, taking
E Sk > 0(k) 1is a useful bound for comparative purposes.

Consider simulating the Markov chain with replications executed in 5

parallel. Simulation begins with an exit of all k replications from

state 0 . Then one sets Paa = 1 and paj =0 jesa , if state a is
to be absorbing state. Note that the chain is absorbing with Sa a
transient set of states. The simulation ends with the entry of the last [

of the k replications into state a . ‘Let Kijz denote the number of
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independent replications that move from {1 to j on transition 2 and

let Kjg denote the number of replications in state j after transition

2. Then

. ] @
R, =+ T | A, K.,
kook 2=1 i,jeS i 7ige

is an unbiased estimator of 04 with wvar ﬁk = var RP . Note that

o K
) Kp=7 1 7 wNm (3)
g=17i,5c8 1Y Tpa feS "jes

Let
Tk = min (&: Kag = k),
From Theorem 1 of Fishman (1981), one has E f; < 0(k) . Now one

easily sees that at transition £ no more than min(k, &%)
states are occupied. Therefore, no more than &t(t + 1)/2 states

are occupied in t transitions and the expected number of occupied
states has upper bound % -(E f; +E fk) < 0(6k) . Let s

k
denote the cost of simulating k independent raenlications in parallel

and note that no more than 25 + 1 states can be entered from a given
state. If one uses a sampling program as in Ahrens and Dieter (1979)

or in Fishman (1979), which have bounded computation times, to generate




the binomial variates ij 2 for jeS, r = 1....,sj and 5 = 1,2,..

then

c 2
E Sk < O(u k)

This observation is peripheral to our main interest and we merely mention
it for completeness.

Once the replica*ions are to be run in parallel an opportunity ex-
ists to induce a desirable form of correlation across replications wnile
preserving the required distributional behavior along the saiple path of

each replication. Define

. = 1,...,5. 3 3=0,1....
erﬁr W g+ (4)

Let U,U],...,UK be i.i.d. random variables from ((0,1) where
Ja
Kiz > 0 1is given. Then for parallel replications one has

[N

ijjrm i §m=’l I-[aj’,ﬁ_]. qu)(um) (5)
where
Q50 = 0
and
I[u,vw(x) =1 Uus<x<y

=0 otherwise
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Observe that on each transition (2) a Bernoulli trial determines
the path that each replication follows, independent of the paths

of other replications. Moreover, var(ij 1+1]Kji) = Kjg e (1 -p ) .

jm,

ar
Although the Bernoulli property must be ma1nta1nod to assure that the
sample paths for each replication follows the correct probability
law, the independonce across replications is but a censequence of
the independence of U],....Uy . Hereafter we use a prime superscript
\jg'
(') to denote parallel correlated replications.
5 that f 1 '
uppose that for r ....,KJQ
-1 , r-1
o= U+ U< -7
m KJR KJ.Q (63)
=1+ E?l -1 otherwise
J&
so that
K. |
K, | (U ) 1 (6b)
. = ’ r=l,...,S; .
LR B M e R AT 3

We refer to this representation as rotation sampling. See Fishman
and Huang (1980). Using the notation X = x (mod 1) and LxJ] = x - X, 3

one then has from Theorem 5 in Fishman (1981):

v




note in

(i1)

at a time, K

r=1,...

w.p. max(P,Q) - Q
w.p. 1 - max(P,Q) + min(P,Q)

w.p. max {(P,§) - P (7a)

K rg...]: tQy - tPy -1
= 1Q) - LPy
= Q) - P)+1

!

!
where P = KJ. 8j,r-1 0 Q= szqu

1
im, Y(1 - szpjm. Y < 174 .

-
var(K = (Kjlp
jr jr

[} [}
ijr£+1lxji)

[}
(i11)  var ij 4] © o1y .

jr

Since only two of the three outcomes in (i) bhave positive probability

’

jm. 2+ has the Bernoulli property. Most importantly,
Jjr

?
(i1) that the variance is independent of K.

, in contrast
A

to the linear dependence on K. in the case of independent repliications.

Je

Also, the required Bernoulli property for each replication is preserved.

As an alternative to (6b) , (i) enables one to write for

'Sj

ol
"
o

¢ =
ijjr2+] =100 - P+ Ipp o (U)

(7b)

o
v
o)

tQ) - LPJ - 1[6;5)(U)




i
]
)

<, M
LA RN WY waa

V’ ER.
N

-1-

This expression is considerably more efficient to use than (6b) ds in
practice for its cost depends only on the number of occupied states and
not on the number of nonabsorbed replications. Hereafter, we assume

that (7b) s used.

Let
) A, K. (8a)
R = . . a
k% jomeS Jm Timg
! ‘l ad !
k k g=1 kg

1
Here Rkl denotes the sample contribution to reward on transition 2
¢
Using the results fn (7) one can easily show that var ng < 0(8227),
which is independent of k . In the case of a finite state space

[} !
Fishman (1981), shows that for T, = min(t: Kat = k) and cost Sk

-~ X -

£ T; <E S; < 0(In k) and var R < 0((Ink/k}?) . However, one

cannot carry over these results directly for the case of an unbounded
state space. Before deriving the corresponding results for this case,

we study an interesting property of T; which holds for both finite

and infinite state models. Because df the restrictions on the pij's,

at most & + min(a,8) transient states have nonzero entries on transition

!
Tk - 1. In fact, absorption can occur only when all the nonzero entries

are in states a - min(a,6),...,a-1 and a+l,...,a+d in the way specified

in Lemma 1.




Lemma 1. In order for total absorption to occur on transitions

2+1, 2+42,..., necessary and sufficient conditions at the end of transi-

tion £ are

(a) K;z =0 i -a] >6
(b) ki, s /(1 - py,) i -al s6.

Proof. Condition (a) is a consequence of Pia = 0 for |j-a| » 6 .
For part (b) we note that total absorption using rotation sampling
implies

)

[ ]
Kja, 041 = LKsp Pjad * 1= Kyp (§-al sé6.

For a specific j this occurs with positive probability if and only if

] -D. ]
Kips 1/(1 pga)
Lemma 1 provides the basis for an initial characterization of
absorption time in Lemma 2.
Lemma 2. Let k > 1/(1<«) where a = sup p.. .
—_— : ja
JeS
a
Let
T

: = min(£: conditions (a) and (b) of Lemma 1 obtain)

and




'
(i) ET, L

(ii) Y, 1is independent of k.

=t Tk + EY

Proof. Part (i) follows by inspection. Part (ii) makes use of the
fact that since all KSZ < 1/{1-a) < k for g = T: + 1, T: +2,...,
then the remaining time to absorption Yk must be independent of k .

In effect, rotation sampling is nonoperative for t > T: . '
Theorem 1 provides a more comprehensive characterization of absorption

time T;

Theorem 1. Let

(1)
1)

probability of moving from i to J 1in £ steps.

! 1]

Mise T Ki5e 7 KiLe-1 Py




} where
t-1 t-2
Z.,.=1] M . +7 ¥ M., (1 - p(r)) .
at mes, ™t Cpa i,mes, '™ zr=1 ma
. o ,
(i) Tk = 0(In k) w.p.1.
1
(iii) E(Tk)r = 0((1n k)") r=1,2,...

See the Appendix for nroof. f

Theorem 2 shows the benefit of rotation sampling for the representa- ?

tion in (1) .

Theorem 2, For the simulation of a Markov chain as in (1) wusing

rotation sampling as in (6a) and (7b) :
(1) E Sy s 0((&1n k)?)

(1) var R s 0(82(1n k)* /Kk?) .

o , E S« var R, - ] :

(iii) V(Rk,Rk) = W 2 0 (k%68 (Mn k) ). ‘
See the Appendix for the proof. The expression V(Rk,R;) gives a

measure of the relative efficiency of rotation sampling based on (7b)

as compared to independently sampled replications for simulating the

chain (1) .
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It is of interest to compare these results with those in Fishman
(1981) for an n + 1 state chain. Although those results hold for the
absorbing state a = 0 , they also apply, with minor adjustment, more
generally. In particular, E S; s 0{n? In k) and
var R; s 0({n In k)?/k?). These are consistent with (i) and (i)
of Theorem 2 when one notes that the mean number of transients states
entered has an upper bound min(0(n 1n k), 0(8(1n k)?)) and the number

of states to which a transition can occur has an upper bound

min{ntl, 2541} .

[
Although the results for var Rk hold for bounded {Aij} » the
[
results for the variance reduction measure V(Rk, Rk) and the absorption
time T; apply more generally. For example, the relative desirability
of the proposed sampling plan continues to grow with k for the family of
p
reward functions {A,. =c,+ ] (c it + 4 jl)} . Section 2 uses a
ij 0 =1 L
reward function of this type to show how one can achieve additional variance

reduction.

2. Exploiting Special Structure

Although Theorem 2 shows that for large k rotation sampling
offers a clear advantage over independent serial replications,
the factors &° and (1n k)" tn the bound on var R; are sufficiently
broad to make one look for improved convergence for moderate k .
Consider the sampling at transition £ . Recall that rotation.
sampling applies to the K;1 transitions from state j , but
’

transitions from different states are independent, given {Kjl v J esa}

We now describe how a modification of this indenrendent sampling can

e —
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for special cases of (Ajm; j.m=10,1,2,...} lead to a considerable
reduction in variance. Theorem 3 provides the basis for the approach.
Theorem 3. Let
0 <py <1
94" 0
Q5 = Q59 * P; i=0,1,...
X, = [ — - (U) if 9, 4 s7Q,
1 [q]_] * q]) 1 1 1 (9)
=1 -1~ - (V) if E._ > q.
[q‘i’ qi-]) i-1 1
. 1
Y. = X. s =1,2,...
S j=g 1
where U ~ Uu(0,1) . Then
= — = ], R
(1) Yo = 1o s+ I[o’qs)(U) s = 1,2
(1) 2o =Y, =Y = Llagd- lagd + I (V) t>s
where
= - ifg < q
Ig (V) Iﬁs’qt)(}l) 9 S q,
: Iﬁt.qs)w) fag> a

See the Appendix for the proof. The significance of this result

becomes apparent shortly.




Consider a Markov chain for which

I B 2 so that
one has
R, ..o = ' '
ko241 chsa(BJ KJ”J12+‘ S RTY (10)
where A. = A, and B. = A, - A, for j =0,1,... and
J Jsz J ij] ij2

B_] = 0 . Recall that

! !
K. = LK, ,p J+ 1 (u,)
Jmq 241 AEAS LIS (0,050

= ces i.i.d. u(o,1) , so
where P Kgi pjmj] and UO’Ul’UZ’ are i.i.d. from u(0,1)
that

[
Ry 241 © ot ZJ'esa Bj I[O.pj)(uj) (1)
where h
B, LK, + A Ky |

S = Yjes, B3 YyePimyyd T A5 ! |

Let

*

\N max(J: K;z > 0)

e e g e o
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{
Then from Theorem 1
*
I} ] 1 jP, \
var(Rk’2+]|sz J‘Sa)"l 2j=0 BJ . (12)
4
Now one can write “(11) equivalently as
i i
[
= - 1 13
Reant =6t Lo (By - Byr) L 10.p) (13) ‘
?
where one should note that !
| to.p) %) = 1505, o f 4
| (14)
; . — —
| - I[aﬁ'aﬁ-l)(um) 81> G -

As an alternative to i.i.d. UO'U]""’ set U0 = U] e . .= U

where U ~ ¢(0,1) . From Theorem 3 , one has (13) as }

4
J
L
[

Now observe that
*
Jm
' ‘ Al B. - B, 11]? (16
var (Rk.2+]|Kj2 jisa) < 4 [ZJ=O I j - j_]l] [ )
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which is to be compared with (12) . However, a more appea1ing case

exists. If for Jj = 0,1,... either Bj 2 Bj_] or B < BJ 7 » then

one has

I ' ! . 2
g var(Rk,lﬂlKjg JeSa) < Bj:/4

As an example, consider the reward

A, =63 +Cpmy*cy.
Jr I

Then

B. = A, - A, = ¢ (m,, - m.,)
J ij] ijz 2V je

so that (15) has for either mj] > mj2 or m.

51 < mJ.2 for j = 0,1,...

var(R k 2+1 lK i JeS,) s [ey (my Moy *,)/21% s [cy(26 + 1)/2]% = 0(87)

whereas (11), based on independent UO’Ul""’ has |
: |

’ ’ C; j;.
var(Ry puqlKyp JeS,) s ngo (mgy - mi,)? s 0(62J: 1) [

R At A P Ut~ gy T e
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The extent to which one can exploit special structure for more

general {Ajmjr: r=1,...,sj; Sj=2 j=0,1,...} and for the case
{sj > 2} remains a topic for future research.

3. An lllustration

This section describes a simulation designed to show how the
theoretical results of Sections 1 and 2 fare in practice. Consider a
single server queueing system with independent and identically distri-

buted exponential interarrival times with rate ) , independent and

identically distributed exponential service times with rate w > X and b
infinite capacity. As an alternative to this continuous time repre-
sentation one can view this system as a nearest neighbor Markov chain

with p = w/(Atw) j=1,2,... . Here &8 =1, sj = 2 for

Jed-)
J=1,2,... and the absorbing state is a =0 .

The objective is to estimate the mean number of customers in system,

u = M{w-A) (e.g. see Gross and Harris 1974, p. 67). In the serial

model we estimate this quantity by

1 1 (m) (m)
L N + N\ )
. 13 i Mw zm,]zj.] i 3,3-1 J'JHJ (17)
k - . |
! ( ARG |
K A+w el gul J.i-1 5,341 E

o = i
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In the parallel model using rotation sampling we estimate
by

T, = . '

zalzjalj(KJ.3-1.§+Kj,j+l,a)

boa B
l
@ | vt
£
[ |
P

k 1 k ' ‘ -
_A.+__): ) (18)

PC) s

Note that (17) and (18) are ratio estimators in contrast to (2) and
(8b) which are iinear estimators. As a result, (17) and (18) are
biased estimators of u ., Therefore, our evaluation focuses on mean-
square error rather than on variance alone. The motivation for consider-
ing ratio estimators arises from the observations that they commonly
arise in regenerative simulation.

For convenience and without loss of generality we set w = 1.
Table 1 gives the number of independent macroreplications performed

for each value of k and experimental layout (p) . Table 2 presents

Table 1
Experimental Layout
(k = 2M)
Number of Macroreplications
p=2Mw 1000 100
0.5 = 1,...,1 me=12,...,14
0.9 m=1,...,11 m=12,...,14
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ratios of interest. Here oy and MSEi denote the CPU time and mean-
square error for model i where 1 =1 denotes k independent tours in
series, 1 = 2 denotes parallel replication with (7b) and i = 3 denotes
parallel replication using (7b) and (T4).

For ¢ = 0.5 Table 1 reveals that k =16 is the first sample
size that gives benefits for both models 2 and 3. Also, note the
strong favorable performance for k 2 256 . For p = 0.9 the
benefits of both models 2 and 3 do not arise until k = 1024 . The be-
havior thereafter shows substantive variance reduction. In presenting
results for small values of k we merely sought to provide a comprehensive
picture of how the models behaved. In practice one normally would expect
to use a considerably larger k so that the risk of an unfavorable
variance reduction is small. Since limited time was spent on the computer
code for models 2 and 3, one also suspects that careful attention to pro-
gramming efficiency would move the indifference points to smaller values

of k for both p =0.5 and 0.9.




Table 2

Simulation Results for Example

p=0.5 p=0.9
¢y MSEy fl;ﬂiil €y MSEy ¢, -MSE,
k ¢, MSE, cy MSE4 C,-MSE, ngﬂiﬁg
(1) (2) (3) (4)

2 50 .54 18 .22
4 58 .44 22 .20
8 .83 .67 .23 19
16 1.30 1.00 17 .28
32 1.32 2.07 22 .25
64 2.23 3.69 29 .33
128 4.53 5.82 33 .62
256 7.70 14.71 .42 .67
512 16.46 32.06 .54 1.40
1024 37.99 64.38 1.00 2.07
2056 71.32 174.11 1.95 4.59
4096 230.02 583.63 3.70 10.3¢
8192 451,79 1476.74 4.98 22.70
16384 696.20 3783.70 15.46 42.82
32768 2366.17 10280.72 17.42 63.00
65536 8526.68 22743.06 37.21 143.30




References

Ahrens, Joachim H. and Ulrich Dieter (1979). "Sampling from
Binomial and Poisson Distributions: A Method with Bounded
Computation Times," Cemputing, 23, 1-19.

Fishman, George S. (1981). "Accelerated Accuracy in the Simulation
of Markov Chains," Curriculum in QOperations Research and Systems
Analysis, University of North Carolina at Chapel Hill, Technical
Report 81-1.

Fishman, George S. and Baosheng Huang (1980). "Antithetic Variates
Revisited," Technical Report 80-4, Curriculum in Operations
Research and Systems Analysis, University of North Carolina at
Chapel Hill.

Kronmal, Richard A. and Arthur V. Peterson, Jr. (1979). "On the
Alias Method for Generating Random Variables from a Discrete
Distribution," The Amendican Statistician, 33, 214-9.

Walker, A. J. (1977). "An Efficient Method of Generating Discrete
Random Variables with General Distributions," ACM Transactions
on Mathematical Software, 3, 253-6.




-25.

Appendix

Proof of Theorem 1 (i) comes from applying rotation sampling to k

replications in state j = 0 on transition 2 = 1 , then applying it to

g,...,8 on transition £ = 2, etc. One then

! .

each sz for states j

regroups the resulting terms to give {K;t. jeS}
For (i1) note that

M

\’jl‘ s | ‘iesa JeS

]

Lo oL M=o

ieSa jeS
E th =0
2oalt) (t) .
k pOj < th < k(1 - pOj ) JeSa

and

t t
(2} (2)
k(1 - 22=1 Poa ) < Lap s K Xg:] Poa

Most importantly, observe that th/k does not depend on k . Also, one

has

,
T = min (t: 2, = -k(1 - ] " Po.




Now for the absorbing state there exists pe(0,1) such that

VoD el s ot

=

so that

—f
"

. t
" min(t: 1n 0(p") = 1In ('zat) - In k]

min[t: t 1n 0(p")) = -1n (-2,,) + 1n K]

’

from which it is clear that Tk = 0(In k) w.p.1. (iii) is a direct

1
consequence of (ii) and is relevant when deriving var Rk .

Proof of Theorem 2. Recall that no more than &% steps are visited at

transition £ and no more than &t{t+1)/2 are visited in t transi-

tions. Also, at state j one needs to determine which of the 2§ + 1
[

possible states are entered by the sz replications at transition

2+ 1. Using (iii) of Theorem 1 gives
14 ] 2 [} TI 2
E S 53 (26 + 1)8 E[Tk( C 1) s 0((8 In k)?) ,

which proves (i) .

For (ii), observe that
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where
W... =1. - re., 1 (u.,)
ijs i, ije [O,rijz) i2
- (2-1)
rise = (kPgy Tt 2y g q) Py

and Uiz is the uniform deviate used to determine paths from state i
on transition ¢ . Note that E wijz = 0 and more generally that, like

z is not a function of the magnitude of k . Recall that

i2-1" Yije

var R;(Q <0(5222) .

Now, one can write

Rep =L L Ay Gopgi s+ )

ke ies, JesS J
and
[} ] ?
var R, = E.¢ var(R |T ) + E_* H2!
k Tk k' 'k Tk Tk
where T'
k
] . ‘
Hy?t = — ) E(W, .. |T,)
Tk k "sa jes 2= ijet'k
Since
R 1T0Y < 0((6T.)2
var(RIT) s 0L(eT)%)
and

k| s 0(s(T,)2)

T W e At W A oy,
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one has
2 ! 207" V4
k? var(R [T,) s 0(8%(T )*)
kZHZ' < 0 62 T' [
fS 08T
so that

k? var RL s 0{6%(In k)*) .
Part (iii) follows by substitution.

Proof of Theorem 3. C(Clearly Xi ~ Ben(pi) i=1,....m. Let r= Lq )

Let i,,...,7_  denote the indices at which q. <7,
PR P
Then one can represent YS as

r s
= - - - U I - " (U)}
s 2t=1 w I[qit’ CHERY (v 21=1 [9y.1> 95)

‘izft

Now straightforward evaluation gives (i) so that YS - LqSJ ~ Ben(a;) .

fn particular, var YS = 65(1 - E;) = 0(1) .

For part (ii) we have

S2

Y ¥ =1q J-lq J+Il,= (U)-T1:0= (U)
5 P S [O,QSZ) [0-q5])
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Since

Lo — y{U) = Ipn= y (U) = Fp= =y (V) if g
[O.qsz) [O.qsl) [qs].qsz)

g w]p— - (U) q
[q. .q. ) s s
Sy S 2 1

(ii) obtains .
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